Abstract

Over the years significant scientific attention has been given towards the design of advanced photoactuating architectures as they are important elements for various optical tweezers, grippers, and soft robot applications. Most of the currently available photoactuators, rely on the existence of a free-space illumination pathway from the light sources to the device or on the employment of bendable optical fibers, while consisting of two or more elements, i.e. the photoactuating material and the substrate. Herein, we report on a facile method of preparing single-component pristine microwires (MWs) that exhibit photoactuating features upon utilizing a soft phosphate glass doped with silver nanoparticles (AgNPs), without the need of any additional photoactuating element. The developed photoactuators exhibited bending angles of around 110°, within a couple of seconds. In addition, we have fabricated double-component polymer-coated phosphate glass MWs photoactuators, upon employing PDMS coatings on the surface of the so-formed glass MWs. The introduction of the polymer component boosts the bending angle of the photoactuating device to over 200° within the a few seconds upon modest laser irradiation. The presence of AgNPs within the glass MWs, play a key role on the remarkable performance of the developed photoactuators, both in terms of actuating angles as well as of the respective response times, since they assist on the effective transmission of laser irradiation energy to thermal energy. The fabrication method reported here appears promising for the development of high-performance and low-cost free-space, as well as fiber-based photoactuators.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.