Abstract

A silicon light emitter in telecom-band based on a single germanium quantum dot precisely embedded in a silicon photonic crystal nanocavity is fabricated by a scalable method. A sharp resonant luminescence peak is observed at 1498.8 nm, which is enhanced by more than three orders of magnitude. The Purcell factor for the fundamental resonant mode is estimated from enhancement factor and increased collection efficiency. The cavity modes coupled to the ground state and excited state emission of germanium quantum dot are identified in the luminescence spectrum. Our devices provide a CMOS-compatible way of developing silicon-based low-power consuming light emitters, and are promising for realizing on-chip single photon sources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call