Abstract

Frontal projection autostereoscopic three-dimensional (3D) display is a kind of excellent 3D display technique with large display size and efficient space utilization, especially suitable for the future glasses-free 3D cinema. In this paper, we propose a frontal projection autostereoscopic 3D display using a liquid crystal lens array (LCLA) and a quarter-wave retarding film. The LCLA acts as two roles, refraction and transparency, for different polarized light. The forward projected polarized light can pass through the LCLA as a transparency, and then pass through the quarter-wave retarding film. After reflecting from a polarization-preserving screen, the returned light will pass through the quarter-wave retarding film again and turn to an orthogonal polarization. This polarized light will be refracted by the LCLA and reconstruct the 3D image. The demonstrated LCLA has the merits of no driving voltage, simple fabrication, and cost-effective. Optical experiment verifies the proposed method, which is promising for its potential application in the future glasses-free 3D cinema.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call