Abstract

It has become increasingly important to include one or more individual flavours of dynamical fermion in lattice QCD simulations. This is due in part to the advent of QCD+QED calculations, where isospin symmetry breaking means that the up, down, and strange quarks must be treated separately. These single-flavour pseudofermions are typically implemented as rational approximations to the inverse of the fermion matrix, using the technique known as Rational Hybrid Monte Carlo (RHMC). Over the years, a wide range of methods have been developed for accelerating simulations of two degenerate flavours of pseudofermion, while there are comparatively fewer such techniques for single-flavour pseudofermions. Here, we investigate two different filtering methods that can be applied to RHMC for simulating single-flavour pseudofermions, namely polynomial filtering (PF-RHMC), and filtering via truncations of the ordered product (tRHMC). A novel integration step-size tuning technique based on the characteristic scale is also introduced. Studies are performed on two different lattice volumes, demonstrating that one can achieve significant reductions in the computational cost of single-flavour simulations with these filtering techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.