Abstract

We report the collective and single-filament dynamics of long semiflexible actin filaments flowing in an evaporating droplet adhering on glass and accumulating along the physical barrier constituted by the droplet triple line. The observation of fluorescent reporter filaments embedded in the entangled network enables us to relate the final collective organization of the accumulated filaments to the individual filament dynamics. Three areas corresponding to distinct filament organizations are observed in the region of the initial triple line pinning, after complete evaporation of the droplet. A nematic liquid-crystal-like alignment of the filaments is observed at the edge of the droplet because of the dynamic filament alignment, whereas a less-ordered packing is generated because of the bending and folding of most of the filaments. The latter unconventional dynamics is analyzed in terms of the amplification of undulation modes typical of semiflexible polymers. The receding regime of the droplet triple line leads finally to a remaining film of actin filaments showing random organization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call