Abstract

A novel route for production of auxetic fibres has been adapted from conventional melt extrusion techniques. These fibres were reproduced, characterised and tested, for the first time, to assess the potential of auxetic fibres as reinforcements in composite materials. Initial experimental work has included the embedding of single fibres in modified epoxy resin. Auxetic fibre specimens were then compared with conventional fibre specimens through a specially designed fibre pullout testing procedure. The auxetic specimens displayed superior anchoring properties. The average maximum force at de-bonding of the auxetic fibres (0.95 N) was observed to be over 100% higher than that for conventional ones (0.44 N) and the average energy required to fully extract the auxetic fibre from the modified resin was 8.3 mJ while the conventional fibre required only 2.5 mJ on average. The results indicate that composites employing auxetic fibres as the reinforcement phase will exhibit enhanced resistance to failure due to fibre pullout.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.