Abstract

We investigated a deep learning strategy to analyze optical coherence tomography image for accurate tissue characterization based on a single fiber OCT probe. We obtained OCT data from human breast tissue specimens. Using OCT data obtained from adipose breast tissue (normal tissue) and diseased tissue as confirmed in histology, we trained and validated a convolutional neural network (CNN) for accurate breast tissue classification. We demonstrated tumor margin identification based CNN classification of tissue at different spatial locations. We further demonstrated CNN tissue classification in OCT imaging based on a manually scanned single fiber probe. Our results demonstrated that OCT imaging capability integrated into a low-cost, disposable single fiber probe, along with sophisticated deep learning algorithms for tissue classification, allows minimally invasive tissue characterization, and can be used for cancer diagnosis or surgical margin assessment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.