Abstract

In this paper a single facility location problem with multiple relocation opportunities is investigated. The weight associated with each demand point is a known function of time. We consider either rectilinear, or squared Euclidean, or Euclidean distances. Relocations can take place at pre-determined times. The objective function is to minimize the total location and relocation costs. An algorithm which finds the optimal locations, relocation times and the total cost, for all three types of distance measurements and various weight functions, is developed. Locations are found using constant weights, and relocations times are the solution to a Dynamic Programming or Binary Integer Programming (BIP) model. The time horizon can be finite or infinite.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.