Abstract

Following recent interest by the community, the scaling of the minimal singular value of a Vandermonde matrix with nodes forming clusters on the length scale of Rayleigh distance on the complex unit circle is studied. Using approximation theoretic properties of exponential sums, we show that the decay is only single exponential in the size of the largest cluster, and the bound holds for arbitrary small minimal separation distance. We also obtain a generalization of well-known bounds on the smallest eigenvalue of the generalized prolate matrix in the multi-cluster geometry. Finally, the results are extended to the entire spectrum.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.