Abstract

This paper describes how Single Event Effects (SEEs) produced by heavy ions disturb the operation of Pinned Photodiode (PPD) CMOS Image Sensors (CISs) in the frame of space and nuclear applications. Several CISs with 4T and 5T pinned photodiode pixels were exposed to ions with a broad Linear Energy Transfer range (3.3 to 67.7 MeV·cm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> /mg). One sensor exhibited Single Event Latchups (SELs). Physical failure mechanism and latchup properties were investigated. SELs are caused by the level shifters of the addressing circuits, which create frame perturbations - following which, in some cases, parts of the addressing circuits need to be hardened. In the second part of the paper, the effects of anti-blooming capabilities on the Single Event Transient effects (SETs) are analyzed. SETs in pixels can be partially mitigated by anti-blooming through the transfer gate and/or a dedicated transistor. This work also shows that the number of pixels disturbed by SETs can be reduced by using appropriate anti-blooming techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call