Abstract

Grating couplers are widely used as an efficient and versatile fiber-chip coupling structure in nanometric silicon wire waveguides. The implementation of efficient grating couplers in micrometric silicon-on-insulator (SOI) rib waveguides is, however, challenging, since the coupler waveguide region is multimode. Here we experimentally demonstrate grating couplers in 1.5 μm-thick SOI rib waveguides with a coupling efficiency of -2.2 dB and a 3 dB bandwidth of 40 nm. An inverse taper is used to adiabatically transform the interconnection waveguide mode to the optimum grating coupler excitation field with negligible higher order Bloch mode excitation. Couplers are fabricated in the same etch step as the waveguides using i-line stepper lithography. The benefits of wafer-scale testing and device characterization without facet preparation are thus attained at no additional cost.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.