Abstract

Biomineralization is the process by which biological systems synthesize inorganic materials. Herein, we demonstrate an engineered cystathionine γ-lyase enzyme, smCSE that is active for the direct aqueous phase biomineralization of CdSe and CdSe-CdS core-shell nanocrystals. The nanocrystals are formed in an otherwise unreactive buffered solution of Cd acetate and selenocystine through enzymatic turnover of the selenocystine to form a reactive precursor, likely H2Se. The particle size of the CdSe core nanocrystals can be tuned by varying the incubation time to generated particle sizes between 2.74 ± 0.63 nm and 4.78 ± 1.16 nm formed after 20 min and 24 h of incubation, respectively. Subsequent purification and introduction of l-cysteine as a sulfur source facilitates the biomineralization of a CdS shell onto the CdSe cores. The quantum yield of the resulting CdSe-CdS core-shell particles is up to 12% in the aqueous phase; comparable to that reported for more traditional chemical synthesis routes for core-shell particles of similar size with similar shell coverage. This single-enzyme route to functional nanocrystals synthesis reveals the powerful potential of biomineralization processes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.