Abstract
Nano‐electrochemical tools to assess individual catalyst entities are critical to comprehend single‐entity measurements. The intrinsic electrocatalytic activity of an individual well‐defined Co3O4 nanoparticle supported on a carbon‐based nanoelectrode is determined by employing an efficient SEM‐controlled robotic technique for picking and placing a single catalyst particle onto a modified carbon nanoelectrode surface. The stable nanoassembly is microscopically investigated and subsequently electrochemically characterized. The hexagonal‐shaped Co3O4 nanoparticles demonstrate size‐dependent electrochemical activity and exhibit very high catalytic activity with a current density of up to 11.5 A cm−2 at 1.92 V (vs. RHE), and a turnover frequency of 532±100 s−1 at 1.92 V (vs. RHE) towards catalyzing the oxygen evolution reaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.