Abstract

Abstract A novel single-ended mid-infrared laser-absorption sensor for time-resolved measurements of water mole fraction and temperature was developed and deployed within the annulus of a hydrogen/air-fed rotating detonation engine (RDE). The sensor transmitted two laser beams targeting mid-infrared water transitions through a single optical port on the outer wall of the cylindrical RDE annulus and measured the backscattered radiation from the RDE inner surface using a photodetector for a round-trip path of 1.52 cm. Optimizing the sensor's optical arrangement using numerical ray tracing to minimize interference from optical emission, beam steering, and scattered laser light from window surfaces was essential to sensor performance. Scanned-wavelength-modulation spectroscopy with second-harmonic detection and first-harmonic normalization was implemented to allow for frequency-domain multiplexing of the two lasers and to suppress non-absorbing interference sources such as beam-steering and emission. Tunable diode lasers near 2551 and 2482 nm were modulated at 100 and 122 kHz, respectively, and sinusoidally scanned across the peaks of their respective water transitions at 10 kHz to provide a measurement rate of 20 kHz and detection limit of 0.5% water by mole. Experimentally derived spectroscopic parameters enabled water and temperature sensing with respective uncertainties of 7.3% and 5.3% relative to the measured values. Time-resolved and time-averaged sensor measurements of gas temperature and water vapor mole fraction allow quantitative evaluation of the combustion progress at the measurement location and thus provide a design tool for RDE optimization. Broadly, this single-ended laser sensor should find applications in other combustion systems where optical access is limited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.