Abstract

Here, we employ a numerical approach to investigate the transport and conductance characteristics of a quantum point contact. A quantum point contact is a narrow constriction of a width comparable to the electron wavelength defined in a two-dimensional electron gas (2DEG) by means of split-gate or etching technique. Their properties have been widely investigated in the experiments. In our study, we define a quantum Hall based split-gate quantum point contact with standard gate geometry. Firstly, we obtain the spatial distribution of incompressible strips (current channels) by applying a self consistent Thomas-Fermi method to a realistic heterostructure under quantized Hall conditions. Later, time-dependent Schrodinger equation is solved for electrons injected in the current channels. The transport characteristics and time-evolutions are analyzed in the integer filling factor regime (ν = 1) with the single electron density. The results confirm that the current direction in a realistic quantum point contact can be controllable with the external interventions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.