Abstract

We present the results of an experimental study of electron transport through individual phosphorus dopants implanted into a silicon crystal. We developed an original technique for single-electron transistor fabrication from silicon-on-insulator material with an island formed by single phosphorus atoms. The proposed method is based on well-known CMOS compatible technological processes that are standard in semiconductor electronics and may be used in most research groups. The large Coulomb blockade energy value of the investigated single-electron transistor (∼20 meV) allows one to observe single-electron effects in a wide temperature range up to 77 K. We measured and analyzed stability diagrams of fabricated experimental structures. We demonstrated a single-electron transistor with controllable electron transport through two to three phosphorus dopants only.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.