Abstract
Electron spin resonance spectroscopy is the method of choice for characterizing paramagnetic impurities, with applications ranging from chemistry to quantum computing1,2, but it gives access only to ensemble-averaged quantities owing to its limited signal-to-noise ratio. Single-electron spin sensitivity has, however, been reached using spin-dependent photoluminescence3-5, transport measurements6-9 and scanning-probe techniques10-12. These methods are system-specific or sensitive only in a small detection volume13,14, so that practical single-spin detection remains an open challenge. Here, we demonstrate single-electron magnetic resonance by spin fluorescence detection15, using a microwave photon counter at millikelvin temperatures16. We detect individual paramagnetic erbium ions in a scheelite crystal coupled to a high-quality-factor planar superconducting resonator to enhance their radiative decay rate17, with a signal-to-noise ratio of 1.9 in one second integration time. The fluorescence signal shows anti-bunching, proving that it comes from individual emitters. Coherence times up to 3 ms are measured, limited by the spin radiative lifetime. The method has the potential to be applied to arbitrary paramagnetic species with long enough non-radiative relaxation times, and allows single-spin detection in a volume as large as the resonator magnetic mode volume (approximately 10 μm3 in the present experiment), orders of magnitude larger than other single-spin detection techniques. As such, it may find applications in magnetic resonance and quantum computing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Nature
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.