Abstract
The controllable transfer of a single electron in devices (SEDs) is one of the viable trends for a new generation of technology. However, novel applications demand innovative strategies to fabricate and evaluate SEDs. Here, we report a hybrid organic/inorganic SED that combines an ensemble of physisorbed, semiconducting molecular layers (SMLs) and Au nanoclusters embedded in the transport channel by in situ, field-induced metal migration. The SED is fabricated using an integrative platform based on rolled-up nanomembranes (rNMs) to connect ultrathin SMLs from the top, forming large-area tunnel junctions. The combination of high electric fields (1–4 MV/cm), electrode point contacts, low temperatures (10 K), and ultrathin molecular layers ( 1 MV/cm). The propel...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.