Abstract

We demonstrate single electron charging in fully controllable nanoscale quantum devices at temperatures above 4 K. Hitherto, single electron devices operating at ‘‘high’’ temperatures have been two-terminal, having no control electrode, whereas fully tunable structures such as quantum dots have only shown charging effects at temperatures of 4 K or less. We have fabricated ultrasmall quantum dots on modulation doped heterostructures where the two-dimensional electron gas is less than 30 nm from the surface. Dots with lithographic diameter 150 nm show Coulomb oscillations up to temperatures of 7 K. Higher temperature operation allows potential applications to be considered without the need, for example, of a dilution fridge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.