Abstract

Simultaneous detection of multiple biomarkers holds great promise for acute leukemia evaluation. Here, a novel biosensor is developed for simultaneous electrochemical detection of interferon gamma (IFN-γ) and lysozyme (Lys) based on aptamer recognition by coupling “signal-on” and “signal-off” modes. On one Au electrode, two kinds of signaling probes labeled by the thiolated ferrocene (Fc)- and methy blue (MB)- were designed to hybridize with IFN-γ and Lys aptamers respectively to form partial complementary DNA duplexes. In the presence of IFN-γ and Lys, the target–aptamer interaction led to the release of aptamer from duplex DNA structure. The single-stranded signaling probes thus suffered from the conformation changes, which resulted in the decreased (or increased) oxidation peak current of Fc (or MB) according to the “signal-off (or signal-on)” mode. Electrodes were characterized using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Under the optimized conditions, the signal changes were quantified using square wave voltammetry (SWV). This proposed biosensor for IFN-γ and Lys possessed linear detection range from 0.01 to 10nM and 0.1 to 100nM, with the detection limits of 1.14×10−3nM and 0.0164nM, respectively. Moreover, this biosensor was readily regenerated and proved successful toward the practical analysis. The proposed strategy could provide more integrated and reliable information for acute leukemia evaluation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call