Abstract

We report a single-electrode-based sliding-mode triboelectric nanogenerator (TENG) that not only can harvest mechanical energy but also is a self-powered displacement vector sensor system for touching pad technology. By utilizing the relative sliding between an electrodeless polytetrafluoroethylene (PTFE) patch with surface-etched nanoparticles and an Al electrode that is grounded, the fabricated TENG can produce an open-circuit voltage up to 1100 V, a short-circuit current density of 6 mA/m(2), and a maximum power density of 350 mW/m(2) on a load of 100 MΩ, which can be used to instantaneously drive 100 green-light-emitting diodes (LEDs). The working mechanism of the TENG is based on the charge transfer between the Al electrode and the ground by modulating the relative sliding distance between the tribo-charged PTFE patch and the Al plate. Grating of linear rows on the Al electrode enables the detection of the sliding speed of the PTFE patch along one direction. Moreover, we demonstrated that 16 Al electrode channels arranged along four directions were used to monitor the displacement (the direction and the location) of the PTFE patch at the center, where the output voltage signals in the 16 channels were recorded in real-time to form a mapping figure. The advantage of this design is that it only requires the bottom Al electrode to be grounded and the top PTFE patch needs no electrical contact, which is beneficial for energy harvesting in automobile rotation mode and touch pad applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.