Abstract
The single, double, and triple Auger decays from the 1s shake-up states of O2 have been studied using a multi-electron coincidence method. Efficient populations of two-hole final states are observed in single Auger decays of the π-π* shake-up states, which is understood as a characteristic property of the Auger transitions from shake-up states of an open-shell molecule. The O23+ populations formed by double Auger decays show similar profiles for both the O1s-1 and shake-up states, which is due to the contributions from cascade double Auger processes. While the cascade contributions to the double Auger decays increase with the initial shake-up energy, the probability of direct double Auger processes remains unchanged between the O1s-1 and shake-up states, which implies a weak influence of the excited electron on the double Auger emission that originates from the electron correlation effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.