Abstract
In this paper, we describe approaches for the fabrication of single atom devices and spin-based qubits for quantum computing. Addressing of single dopant atoms has the potential to enable precise tunable control over all key electronic properties of basic devices needed for solid-state quantum computing. A new challenge which arises for a variety of qubits is the ability to locate deterministically individual atoms below the surface of the three-dimensional structure to build single or few-atom atom transistors single electron transistors, or diverse quantum sensing devices. Comprehensive applications can be considered for complex donor/acceptor arrangements and this kind of dopant engineering technique has the character of a lithographic method. Scanning Probe Methods are used not only for surface analysis and nanofabrication. We demonstrated in 2004 an integration of a scanning probe with an ion beam similar to the use of a “high resolution dynamic nano-stencil” which enabled the nondestructive imaging of a target together with alignment of an ion beam to device features with a few nanometer accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.