Abstract

The forces, deformations, and stresses generated in macromolecules attached to single-domain magnetic nanoparticles under the influence of a low-frequency (nonheating) magnetic field have been analyzed analytically and numerically. It has been shown that, in bioactive macromolecules, an alternating magnetic field with an induction of 0.1–1.0 T and a circular frequency of ≲104 s−1 can induce forces up to several hundred piconewtons, absolute deformations up to a few tens of nanometers, as well as compressive and shear stresses exceeding 107 Pa. These mechanical stimuli are sufficient for a significant change of interatomic distances in active centers, conformation of macromolecules, and even a breaking of some bonds, which makes it possible to develop a new technological platform for targeted delivery of drugs, remote control of their activity, and cancer-cell destruction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call