Abstract

Single-domain configuration is one of the important key in the applied current- technology especially information technology. In order to address this issue, a magnetic modification of cobalt ferrite nanoparticles (CFO-NPs) by decorating the monazite-natural-mineral (Ce) is presented. Monazite-decorated CFO-NPs are successfully synthesized by the co-precipitation method. The obtained nanoparticle samples are annealed at 200 °C, 300 °C, and 400 °C for 5 hours. XRD results confirms the successful decoration of the monazite sand with CFO-NPs, as demonstrated by the distinctive peaks of CFO-NPs, as well as the major peaks of the monazite-sand. The presence of monazite in the CFO-NPs sample was confirmed by the EDS results. With increasing annealing temperature, the crystallite size increases, respectively. FTIR results show that the monazite-decorated CFO-NPs outcome absorption peaks at kt ∼590/cm and ko ∼390/cm, which are the original absorptions of CFO-NPs. VSM results showed that the single-domain configuration realized owing high the HC (supported by K1 and Kσ) for samples without and annealed at 200 °C, whereas the multi-domain configuration appears to have a small HC (supported only by K1) for samples annealed at 300 °C and 400 °C. The largest HC of the monazite-decorated CFO-NPs was obtained with the annealing temperature at 200 °C, i.e., 3.02 kOe, suggesting that it be supported by both the K1 and Kσ. The magnetic properties obtained also indicate the potential for developing permanent magnets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.