Abstract
The tumor microenvironment of numerous prevalent cancer types is abundantly infiltrated with tumor-associated macrophages (TAMs). Macrophage mannose receptor (MMR or CD206) expressing TAMs have been shown to be key promoters of tumor progression and major opponents of successful cancer therapy. Therefore, depleting MMR+ TAMs is an interesting approach to synergize with current antitumor therapies. We studied the potential of single-domain antibodies (sdAbs) specific for MMR to target proteins to MMR+ TAMs. Anti-MMR sdAbs were genetically coupled to a reporter protein, mWasabi (wasabi green, WG), generating sdAb “drug” fusion proteins (SFPs), referred to as WG-SFPs. The resulting WG-SFPs were highly efficient in targeting MMR+ macrophages both in vitro and in vivo. As we showed that second mitochondria-derived activator of caspase (SMAC) mimetics modulate MMR+ macrophages, we further coupled the anti-MMR sdAb to an active form of SMAC, referred to as tSMAC. The resulting tSMAC-SFPs were able to bind and upregulate caspase3/7 activity in MMR+ macrophages in vitro. In conclusion, we report the proof-of-concept of an elegant approach to conjugate anti-MMR sdAbs to proteins, which opens new avenues for targeted manipulation of MMR+ tumor-promoting TAMs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.