Abstract
Automatic text summarization of a resource-poor language is a challenging task. Unsupervised extractive techniques are often preferred for such languages due to scarcity of resources. Latent Semantic Analysis (LSA) is an unsupervised technique which automatically identifies semantically important sentences from a text document. Two methods based on Latent Semantic Analysis have been evaluated on two datasets of a resource-poor language using Singular Value Decomposition (SVD) on different vector-space models. The performance of the methods is evaluated using ROUGE-L scores obtained by comparing the system generated summaries with human generated model summaries. Both the methods are found to be performing better for shorter documents than longer ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Engineering and Advanced Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.