Abstract

YOYO-I-labeled lambda-DNA was employed as a nanoprobe for different functionalized surfaces to elucidate adsorption in chromatography. While the negatively charged backbone is not adsorbed, the 12-base unpaired ends of this DNA provide exposed purine and pyrimidine groups for adsorption. Self-assembled monolayers (SAMs) formed on gold substrate provide a wide range of choices of surface with well-defined and well-organized functional groups. Patterns of amino-terminated, carboxylic acid-terminated, and hydroxyl-terminated SAMs are generated by lithography. Patterns of metal oxides are generated spontaneously after deposition of metals. By recording the real-time dynamic motion of DNA molecules at the SAMs/aqueous interface, one can study the various parameters governing the retentivity of an analyte during chromatographic separation. Even subtle differences among adsorptive forces can be revealed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.