Abstract

The energy distribution in the electric discharge machining process influences the material removal rate, relative wear ratio and the surface roughness of the machined surface and the effective energy is the part of energy which is distributed toward workpiece to be machined. The theoretical modeling of the process is based upon the heat transfer equations and one of the important parameter is fraction of energy transferred to the workpiece. The model first calculates the temperature distribution in the workpiece material using ANSYS Finite element coding and then volume removed due to single spark is estimated from the temperature profiles. Theoretical material removal rate at different input parameters are compared with the experimental results, making it possible to determine the portion of energy that enters AISI H13 tool steel workpiece. The effect of input parameters (discharge current, voltage, pulse on time) on temperature distributions along the radius and depth of the workpiece has been reported.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.