Abstract

Dontchev and Hager [Math. Oper. Res., 19 (1994), pp. 753-768] have shown that a monotone set-valued map defined from a Banach space to its dual which satisfies the Aubin property around a point $(x,y)$ of its graph is actually single-valued in a neighborhood of $x$. We prove a result which is the counterpart of the above for quasi-monotone set-valued maps, based on the concept of single-directional property. As applications, we provide sufficient conditions for this single-valued property to hold for the solution map of general variational systems and quasi-variational inequalities. We also investigate the single-directionality property for the normal operator to the sublevel sets of a quasi-convex function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.