Abstract

This communication presents a design methodology for a compact low-cost partially reflecting surface (PRS) for a wideband high-gain resonant cavity antenna (RCA) which requires only a single commercial dielectric slab. The PRS has one nonuniform double-sided printed dielectric, which exhibits a negative transverse-reflection magnitude gradient and, at the same time, a progressive reflection phase gradient over frequency. In addition, a partially shielded cavity is proposed as a method to optimize the directivity bandwidth and the peak directivity of RCAs. A prototype of the PRS was fabricated and tested with a partially shielded cavity, showing good agreement between the predicted and measured results. The measured peak directivity of the antenna is 16.2 dBi at 11.4 GHz with a 3 dB bandwidth of 22%. The measured peak gain and 3 dB gain bandwidth are 15.75 dBi and 21.5%, respectively. The PRS has a radius of 29.25 mm ( $1.1\lambda _{0}$ ) with a thickness of 1.52 mm ( $0.12\lambda _{g}$ ), and the overall height of the antenna is $0.6\lambda _{0} $ , where $\lambda _{0}$ and $\lambda _{g}$ are the free-space and guided wavelengths at the center frequency of 11.4 GHz.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call