Abstract

Balanced detection based on double beams is widely used to reduce common-mode noises, such as laser intensity fluctuation and irregular wavelength scanning, in absorption spectroscopy. However, employing an additional detector can increase the total system noise due to added non-negligible thermal noise of the detector, particularly with mid-infrared (IR) detectors. Herein, we demonstrate a new optical method based on double-beam modulation (DBM) that uses a single-element detector but keeps the advantage of double-beam balanced detection. The sample and reference path beams were modulated out-of-phase with each other at a high frequency, and their average and difference signals were measured by two lock-in amplifiers and converted into absorbance. DBM was coupled with our previously reported solvent absorption compensation (SAC) method to eliminate the IR absorption contribution of water in aqueous solutions. The DBM-SAC method enabled us to acquire IR absorption spectra of bovine serum albumin solutions down to 0.02 mg/mL. We investigated the noise characteristics of DBM measurements when the wavelength was either fixed or scanned. The results demonstrate that DBM can lower the limit of detection by ten times compared to the non-modulation method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.