Abstract

Depending on the production process, copper (Cu) foils can be classified into two types, i.e., rolled copper (r-Cu) foils and electrolytic copper (e-Cu) foils. Owing to their high electrical conductivity and ductility at low cost, e-Cu foils are employed extensively in modern industries and account for more than 98% of the Cu foil market share. However, industrial e-Cu foils have never been single-crystallized due to their high density of grain boundaries, various grain orientations and vast impurities originating from the electrochemical deposition process. Here, we report a methodology of transforming industrial e-Cu foils into single crystals by facet copy from a single-crystal template. Different facets of both low and high indices are successfully produced, and the thickness of the single crystal can reach 500 µm. Crystallographic characterizations directly recognized the single-crystal copy process, confirming the complete assimilation impact from the template. The obtained single-crystal e-Cu foils exhibit remarkably improved ductility (elongation-to-fracture of 105% vs. 25%), fatigue performance (the average numbers of cycles to failure of 1600 vs. 200) and electrical property (electrical conductivity of 102.6% of the international annealed copper standard (IACS) vs. 98.5%) than original ones. This work opens up a new avenue for the preparation of single-crystal e-Cu foils and may expand their applications in high-speed, flexible, and wearable devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.