Abstract

Here we investigate the structure, photophysics, and photocatalytic water splitting properties of single-crystalline WO3 nanosheets (0.75 nm × 90 ± 38 nm), obtained by exfoliation from Bi2W2O9. Upon delamination, the nanosheets undergo a structural change from tetragonal symmetry in the parent material to monoclinic, as confirmed by powder X-ray diffraction and electron microscopy. Diffuse reflectance optical spectra show band gap energies consistent with quantum confinement in nano-WO3 (EG = 2.88 eV) and Bi2W2O9(EG = 2.81 eV), relative to bulk WO3 (EG = 2.68 eV). Surface photovoltage measurements on nano-WO3 films on a F:SnO2 substrate demonstrate photochemical carrier formation under band gap excitation and irreversible trapping of holes. Photochemical oxygen formation is observed with 50 mg of the material in aqueous AgNO3 and (NH4)2Ce(NO3)6 solutions under full spectrum (>250 nm) or visible only (>400 nm) irradiation. The highest initial O2 evolution rates (69.7 μmol h–1 for bulk and 35.5 μmol h–1 for...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.