Abstract

A one-dimensional hydrogen-bonded triple-stranded ladder coordination polymer [Cd(bpe)1.5(NO3)2(H2O)] (1) (where bpe = trans-1,2-bis(4-pyridyl)ethylene) containing three parallel C═C double bonds was synthesized. This compound undergoes photochemical [2 + 2] cycloaddition and produces rctt-tetrakis(4-pyridyl)cyclobutane (rctt-tpcb) in up to 67% yield via Single-Crystal-to-Single-Crystal (SCSC) transformation. Triple-stranded ladder-like structures have never before displayed such a kind of SCSC transformation. Furthermore, photoirradiation of ground 1 produces rctt-tpcb in up to 100% yield in the solid state. On the basis of the alignment of three C═C olefinic bonds of bpe ligands in parallel, only two out of the three aligned bpe are expected to undergo [2 + 2] photodimerization. However, the quantitative yield from the solid-state photochemical [2 + 2] cycloaddition reaction has been achieved via grinding of crystals of 1 to a powder. The effects of grinding on photoreactivity of 1 were thoroughly studied using 1H NMR spectroscopy, thermogravimetric analysis (TGA), and Raman spectroscopy. These studies indicate that the molecular movements of the hydrogen-bonded ladders are reinforced due to the loss of coordinated water molecules and the further crystal repacking via bond-breaking/forming of the hydrogen-bonded assemblies during mechanical grinding. The 100% photodimerization of ground 1 shows that the grinding accelerates internal molecular motions of ladder structures within the crystals lattice. The solid-state photoluminescence of 1, before and after UV irradiation, was investigated at room temperature, both indicative of interesting luminescent properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call