Abstract

Abstract γ-Lithium aluminum oxide is a paradigmatic example of an ultraslow lithium ion conductor. This characteristic plays a crucial role in its proposed and actual applications. Herein, we report on the outcome of single-crystal neutron diffraction studies at ambient and high temperature. Careful evaluation confirms the commonly assumed room-temperature structure as derived by powder neutron diffraction in 1965. At 1043 K, a split of the lithium position hints at the onset of intrinsic diffusion. Analysis of the negative scattering-length density using the maximum-entropy method (MEM) indicates a preference for a strongly curved diffusion pathway traversing octahedral voids between adjacent lithium sites. These results help to understand ultraslow lithium diffusion in well-ordered ionic solids on the microscopic scale and, ultimately, to establish structure–property relationships.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.