Abstract

Constructing single-crystal inorganic helical structures is a fascinating subject for a large variety of research fields. However, the driving force of self-coiling, particularly in helical architectures, still remains a major challenge. Here, using MoO3-x sub-nanometric wires (SNWs) as an example, we identified that spontaneous helical architecture with different dimensional features is closely related with their surface asymmetrical defects. Specifically, the surface defects of SNWs are critical to produce the self-coiling process, thereby achieving the ordered helical conformations. Theoretical calculations further suggest that the formation of in-plane and out-of-plane coiling structures is determined by the asymmetrical distribution of the surface defects, and the inhomogeneous charge separation with strong Coulomb attraction dominates the different structural configurations. The resulting MoO3-x SNW exhibits excellent photothermal behaviors in both aqueous solutions and hydrogel matrixes. Our study provides a novel protocol to achieve helical structure design for their future applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call