Abstract

AbstractVan der Waals (vdW) heterostructures open up excellent prospects in electronic and optoelectronic applications. In this work, mixed‐dimensional metal‐halide perovskite/graphene heterostructures are prepared through selective growth of CH3NH3PbBr3 platelets on patterned single‐layer graphene using chemical vapor deposition. Preferred growth of single‐crystal CH3NH3PbBr3 platelets on graphene surfaces is achieved, which is accompanied by significant photoluminescence quenching. Raman spectra reveal that perovskite platelets cause p‐type doping in the graphene layer. A significant Fermi level decrease of 272 meV in graphene is estimated, which corresponds to a high doping density of 7.5 × 1012 cm−2. Surface potentials measured by Kelvin probe force microscopy indicate a negatively charged perovskite surface under illumination, which is consistent with the upward band bending deduced from conducting atomic force microscopy measurements. Moreover, a field‐effect phototransistor is fabricated using the perovskite/graphene heterostructure channel, and the increased Dirac voltage under illumination confirms an enhanced p‐type character in graphene. These findings enrich the understanding of strong interface coupling in such mixed‐dimensional vdW heterostructures and pave the way toward novel perovskite‐based optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.