Abstract

Single-crystal electron paramagnetic resonance spectra of electron-irradiated stishovite, measured at temperatures from 3.5 to 294 K, reveal three S = 1/2 radiation-induced defects: an aluminum-associated oxygen hole center and two nd 1 centers (Ti3+ and W5+). The aluminum-associated oxygen hole center, characterized by an orthorhombic site symmetry, coaxial matrices of the electronic Zeeman g, nuclear hyperfine A(27Al) and nuclear quadrupole P(27Al), and the orientation of the g-minimum axis along an O–O direction and those of the unique A(27Al) and P(27Al) axes perpendicular to the O–O direction, is an Al–O2 3− center, with the unpaired electron equally distributed on two equatorial oxygen atoms of a substitutional Al3+ ion at the octahedral Si site. Fully optimized Al-doped structure, theoretical 27Al nuclear hyperfine and quadrupole coupling constants and directions, and 3D spin densities from periodic hybrid density functional theory calculations provide further support for this structural model. Spin Hamiltonian parameters of the Ti3+ and W5+ centers, which are confirmed by their diagnostic 47Ti, 49Ti and 183W hyperfine structures, arise from electron trapping on substitutional Ti4+ and W6+ ions at the octahedral Si site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call