Abstract

We describe a technique to improve diamond cutting tools used in nanometer- and micrometer-scale machining and formed via focused-ion-beam (FIB) micromachining. Although FIB irradiation is an effective means of fabricating arbitrary miniature shapes in diamond cutting tools, FIB irradiation induces a non-diamond phase, as well as Ga ion implantation, in the irradiated area. This adversely affects the performance of the ultra-precision machining process, especially in terms of tool life and the quality of the machined surface. To eliminate the affected layer, we applied heat-treatment techniques and investigated the optimum thermal profiles. A temperature of 500°C applied to the cutting tool provided optimal machining of nickel phosphorus. The tool life was significantly improved, and a tool life similar to that of a non-irradiated diamond tool was obtained. The quality of the machined surface was also improved markedly owing to superior tool wear and adhesion resistance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.