Abstract
AbstractUltrapure, homoeptaxially grown CVD single crystal diamond is a material with great potential for the fabrication of ionizing radiation detectors for high energy, heavy ion physics, and realtime dosimetry for radiotherapy. Only diamond has suitable transmission properties and can offer the required radiation hardness for synchrotron X-ray beam monitoring applications. We report on experiments made using a synchrotron X-ray microbeam probe to investigate the performance of single crystal diamonds operated as position sensitive, solid state ‘ionization chambers’. We show that for a wide range of electric fields >0.3Vµm−1, suitably prepared devices give excellent spatial response uniformity and time stability. With an applied field of 2Vµm−1 complete charge collection times are ∼1nsec for a diamond plate thickness of 100µm. Position sensitivity was obtained for an X-ray beam incident on the isolation gap between adjacent electrodes of a quadrant device: here, a crossover response region that results from charge carrier diffusion extends over ∼20µm. Using GHz bandwidth signal processing electronics, the signal charge collection process was measured with spatial and temporal resolutions of 1µm and <50ps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.