Abstract

One of the main challenges of quantum information is the reliable verification of quantum entanglement. The conventional detection schemes require repeated measurement on a large number of identically prepared systems. This is hard to achieve in practice when dealing with large-scale entangled quantum systems. In this letter we formulate verification as a decision procedure, i.e., entanglement is seen as the ability of quantum system to answer certain “yes-no questions”. We show that for a variety of large quantum states even a single copy suffices to detect entanglement with a high probability by using local measurements. For example, a single copy of a 16-qubit k-producible state or one copy of 24-qubit linear cluster state suffices to verify entanglement with more than 95% confidence. Our method is applicable to many important classes of states, such as cluster states or ground states of local Hamiltonians in general.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.