Abstract

To address the issue posed by drug-resistant bacteria and inspired by natural antimicrobial enzymes, we report the atomically doped copper on guanine-derived nanosheets (G-Cu) that possess the integrated catalytic cascade property of glucose oxidase and peroxidase, yielding free radicals to eliminate drug-resistant bacteria upon light irradiation. Density functional theory calculations demonstrate that copper could notably promote oxygen activation and H2O2 splitting on the G-Cu complexes. Further all-atom simulation and experimental data indicate that the lysis of bacteria is mainly induced by cell membrane damage and the elevation of intracellular reactive oxygen species. Lastly, the G-Cu complexes efficiently eliminate the staphylococci in the infected wounds and accelerate their closure in a murine model, with negligible side effects on the normal tissues. Therefore, our G-Cu complexes may provide an efficient nonantibiotic alternative to the current treatments for bacterial infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call