Abstract

This work serves as an important extension of previous work on cavitation simulation [Sukop and Or, Phys. Rev. E 71, 046703 (2005)10.1103/PhysRevE.71.046703]. A modified Shan-Chen single-component multiphase lattice Boltzmann method is used to simulate two different heterogeneous cavitation nucleation mechanisms, the free gas bubble model and the crevice nucleation model. Improvements include the use of a real-gas equation of state, a redefined effective mass function, and the exact difference method forcing scheme. As a result, much larger density ratios, better thermodynamic consistency, and improved numerical accuracy are achieved. In addition, the crevice nucleation model is numerically investigated using the lattice Boltzmann method. The simulations show excellent qualitative and quantitative agreement with the heterogeneous nucleation theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.