Abstract

AbstractComplementary circuits based on organic electrochemical transistors (OECTs) are attractive for the development of inexpensive and disposable point‐of‐care bioelectronic devices. Ambipolar OECTs, which employ a single channel material, could decrease the fabrication complexity and manufacturing costs of such circuits. An ideal channel material for ambipolar OECTs should be electrochemically stable in aqueous environments, afford facile ion insertion for both cations and anions, and also facilitate high and balanced electron and hole transport. In this study, triethylene glycol functionalized diketopyrrolopyrrole (DPP)‐based polymer is proposed for the development of ambipolar OECTs. It is shown that DPP‐based OECTs have a high and comparable figure of merit for both n‐ and p‐type operations. Logic NOT, NAND, and NOR operations with corresponding complementary circuits constructed from identical DPP‐based OECT devices are demonstrated. This study is an important step toward the development of sophisticated complementary metal–oxide–semiconductor‐like logic circuits using single‐component OECTs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.