Abstract

Translocation of proteins to different parts of the cell is necessary for many cellular mechanisms as a means for regulation and a variety of other functions. Identifying how these proteins undergo conformational changes or interact with various partners during these events is critical to understanding how these mechanisms are executed. A protocol is presented that identifies conformational changes in a protein that occur during translocation while overcoming challenges in extracting distance information in very different environments of a living cell. Only two samples are required to be prepared and are observed with one optical setup. Live-cell FRET imaging has been applied to identify conformational changes between two native cysteines in Bax, a member of the Bcl-2 family of proteins that regulates apoptosis. Bax exists in the cytosol and translocates to the mitochondria outer membrane upon apoptosis induction. The distance, r, between the two native cysteines in the cytosolic structure of Bax necessitates the use of a FRET donor–accepter pair with R0~r as the most sensitive probe for identifying structural changes at these positions. Alexa Fluor 546 and Dabcyl, a dark acceptor, were used as FRET pairs – resulting in single color intensity variations of Alexa-546 as a measure of FRET efficiency. An internal reference, conjugated to Bax, was employed to normalize changes in fluorescence intensity of Alexa Fluor 546 due to inherent inhomogeneities in the living cell. This correction allowed the true FRET effects to be measured with increased precision during translocation. Normalization of intensities to the internal reference identified a FRET efficiency of 0.45±0.14 in the cytosol and 0.11±0.20 in the mitochondria. The procedure for the conjugation of the internal reference and FRET probes as well as the data analysis is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.