Abstract

Unitary currents through cGMP-dependent channels of retinal rods are observed following incorporation into planar lipid bilayers of native vesicles from purified rod outer segment membranes washed free of soluble and peripheral proteins. The influence of the concentration of cGMP, inhibitors (cis-diltiazem, tetracaine and Ag+) and divalent cations (Ca2+, Mg2+, and Co2+) on the conductance and open probability of the channel is described, as well as the voltage dependence of these effects. The cGMP dependence suggests the existence of four binding sites for cGMP and reveals that sequential binding of four cGMP molecules corresponds to the opening of four discrete conductance levels. Finally, we provide conclusive evidence that activated G-protein does not directly inactivate the cGMP-dependent channels of bovine retinal rods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call