Abstract

Precise localization and characterization of conductance pathways in glandular epithelia have so far proved difficult. The patch-clamp technique for high resolution current recording, which has already been applied successfully to a number of electrically excitable cells, can in principle overcome these difficulties. We now report measurements of single-channel currents from isolated patches of plasma membrane (inside-out) from the baso-lateral surface of collagenase-isolated rat and mouse pancreatic acini. We have identified a cation channel having a conductance of approximately 30 pS and a mean open time in the range 0.3-1 s which is dependent on internal calcium. The single-channel current-voltage relationship is linear and the mean open time independent of the membrane potential. These channels may, at least in part, account for the Ca2+-mediated neural and hormonal control of pancreatic acinar membrane conductance, which is probably responsible for the Ca2+-dependent acinar fluid secretion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.