Abstract

Neural tube closure in vertebrates is achieved through a highly dynamic and coordinated series of morphogenic events involving neuroepithelium, surface ectoderm, and neural plate border. Failure of this process in the caudal region causes spina bifida. Grainyhead-like 3 (GRHL3) is an indispensable transcription factor for neural tube closure as constitutive inactivation of the Grhl3 gene in mice leads to fully penetrant spina bifida. Here, through single-cell transcriptomics we show that at E8.5, the time-point preceding mouse neural tube closure, co-expression of Grhl3, Tfap2a, and Tfap2c defines a previously unrecognised progenitor population of surface ectoderm integral for neural tube closure. Deletion of Grhl3 expression in this cell population using a Tfap2a-Cre transgene recapitulates the spina bifida observed in Grhl3-null animals. Moreover, conditional inactivation of Tfap2c expression in Grhl3-expressing neural plate border cells also induces spina bifida. These findings indicate that a specific neural plate border cellular cohort is required for the early-stage neurulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.