Abstract
Atherosclerosis is the main cause of many cardiovascular and cerebrovascular diseases (CVDs), and gaining a deeper understanding of the intercellular connections and key central genes which mediate formation of atherosclerotic plaques is required. We performed a comprehensive bioinformatics analysis of differential genetic screening, Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway annotation, protein-protein interactions (PPIs), pseudo-timing, intercellular communication, transcription factors on carotid single-cell sequencing data, and aortic bulk transcriptome and metabolomic data. Ten cell types were identified in the data: T cells, monocytes, smooth muscle cells, endothelial cells, B cells, fibroblasts, plasma cells, mast cells, dendritic cells, and natural killer cells. Endothelial, fibroblast, macrophage, and smooth muscle cell subtype differentiation trajectories, interaction networks, and important transcription factors were characterized in detail. Finally, using this information combined with transcriptome and metabolome analyses, we found the key genes and signaling pathways of atherosclerosis, especially the advanced glycation end products and receptor for advanced glycation end products signaling pathway (AGE-RAGE signaling pathway) in diabetic complications, linked the differential metabolites with fibroblasts and atherosclerosis and contributed to it in patients with diabetes. Collectively, this study provides key genes, signaling pathways, cellular communication, and transcription factors among endothelial cells, fibroblasts, macrophages, and smooth muscle cells for the study of atherosclerotic plaques, and provides a basis for the diagnosis and treatment of atherosclerosis-like sclerosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.